

GURV

TECHNOLOGY

www.truedigitalradio.org

Version 4

DRAG CUM LIFT WIND TURBINE

Copy right: -

Rakesh Aggarwal

TDR Foundation, Unit #005, US Complex,
Mathura Road, New Delhi-76

This document is Confidential, and technology disclosed is protected by Indian Patent No. 368515 and international patents in major jurisdictions world-wide. This document is targeted for technology partners and prospective license seekers protected by General Non-Disclosure Agreement (NDA). If you disagree with NDA then do not go beyond this page and destroy this document immediately or return back to sender.

Version V4

For further information Contact: -

Rakesh Aggarwal
rakesh@comconservices.com

or

info@truedigitalradio.org
Ph +91 7042694844

Table of Contents

Background.....	3
Introduction:.....	4
GURV System's Advantages:.....	5
Proof of Concept.....	6
Harnessing Drag Force:.....	8
GURV Solution:	9
Maximizing Energy Harvesting:.....	10
Energy to Weight Ratio Performance:	10
Adaptive Energy Optimization & ROI:.....	11
Re-visiting the Air Foil Design:	12
Efficiency Redefined:	13
Computational Simulations GURV:	14
GURV vs. Conventional Wind Turbines:.....	16
Conclusion	16
INVENTOR.....	17
ADVISOR	18

Background

Wind has fascinated humans in many ways and has been used as natural source of free energy in form of WIND MILLS since past few centuries. The abundant availability of wind energy everywhere has seen developments worldwide.

Known use includes Wind mills for irrigation purposes and doing other mechanical jobs, such as grinding mills etc. 19th century saw converting this energy to electricity and excellent work done by pioneers has paved way for modern wind turbines each generating few Mega Watts of electricity. 3 blade lift designs are most successful and very popular.

Tremendous Drag force of wind has always created interest of designers and lot of work has been done in past resulting in inefficient results. Drag based designs suffered losses due to reverse drag during reverse rotation.

This patented design has overcome this reverse drag problem and converted it in to usable lift force by innovative design named “GURV” drag cum lift turbine.

Introduction:

This groundbreaking Drag Cum Lift Wind Turbine concept (*Fig. 1*), protected by national and international patents.

Fig. 1 Drag Cum Lift Wind Turbine

It provides a remarkable solution to harness wind energy efficiently, addressing the ever-increasing demand of green electricity.

The essence of the design lies in its ability to convert two perpendicular acting forces known as DRAG & LIFT, both supporting the rotation by continuously adjusting the attack angle of the blade in response to its rotatory position with respect to wind direction. This dynamic adaptation of attack angle optimizes the drag force generated as the blades move with the wind and ingeniously converts reverse drag into lift force (adding to drag force) during part rotation as the blades move against the wind.

This innovative design possesses the remarkable capability of harnessing more energy per square meter of wind area. The basis for this extraordinary claim lies in simple yet compelling principles utilizing drag coefficient of 2.1, whereas conventional aero-foil lift designs have a lift factor of 0.56. Moreover, the design boasts of higher blade contact area with the wind, ranging between 70% to 90%, in stark contrast to conventional wind turbines where the blade's contact area with the wind is less than 10% of the swept area.

GURV System's Advantages:

The design offers several key advantages that set it apart:

- Super-efficient Design
- Smaller Size Per MW
- Adaptable to widest range of wind speed
- Utilization of Smaller Parts:
- Easy On-Site Installation:
- Cost-Effective Manufacturing:
- Lower cost of ownership.
- Low Overheads:
- Fast ROI of less than 10 years
- Adaptable from few KW to Megawatts

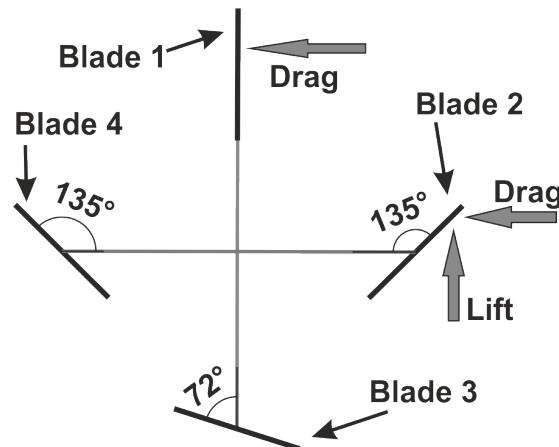
Proof of Concept

Our journey into the Drag Cum Lift wind turbine systems began with astounding bench test results, conducted with a small wind tunnel, and a precisely crafted test jig. These initial experiments (even with an inefficiently small size) were able to establish our concept that reverse drag can be converted into positive lift. It also demonstrated its capacity to generate over two times more torque per square meter swept wind area in comparison to traditional wind turbines. This remarkable initial test performance, which was very conservative estimate of the potential, encouraged us to move further with simulation and advanced physical prototype tests.

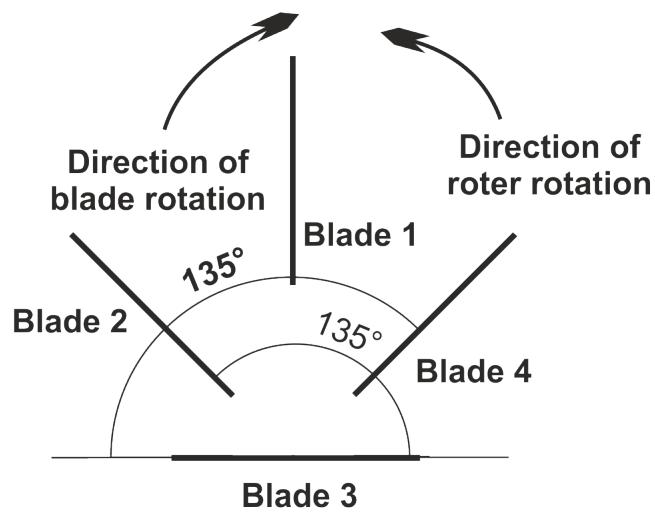
Various methods adopted so far to validate our findings included in house mathematical calculations, summing up force vectors at various angles and positions of the blades. Static torque tests using small wind tunnel using one blade and jig with counter weights. Very basic inhouse static CFD analysis to set design goals for a 4 blade vertical blades physical model. Practical trials included a design using stepper motors to control blade angles with continuous monitoring of blade positions and a simple gear based automatic blade control system.

Expertise from BITS Pilani Goa Campus, were utilized to confirm our excellent findings with their independent

study and tests in their labs, using CFD simulation, under the expert guidance of Dr. Pritanshu Ranjan. Findings at BITS Goa confirmed our belief and encouraged us to go further. We went further, and used another private organization “Krishwave” having facilities and expertise to use advanced versions of “Ansys Fluent” CFD simulation. This included trial with multiple arm lengths different blade sizes and different wind speeds to correlate our findings resulting in superb results indicating 4-5 times more energy per square meter of wind area.


In further yet to be optimized configurations, we anticipate these gains could potentially surge into double-digit multiples in terms of annualized KWH generated. This super-efficient innovative system has, transformative power to render centuries-old reliance on fossil fuel sources obsolete, forever altering the landscape of wind energy generation.

Harnessing Drag Force:


Conventional wind turbines predominantly rely on the conversion of drag forces, which naturally align with the wind's direction, into lift forces that act perpendicular to the wind's direction. (Fig. 2)

While this approach is the most commercially successful technology today, it incurs notable energy losses due to the change in force direction.

One particularly daunting challenge in harnessing drag force is dealing with reverse drag, especially during the blade's half rotation against the wind. (Fig. 3) Historically, this obstacle hindered the success of drag-based Darrius designs, dependent of the shape of blades to minimize the reverse drag effect to some extent.

Fig. 2 Demonstrating dragon lift

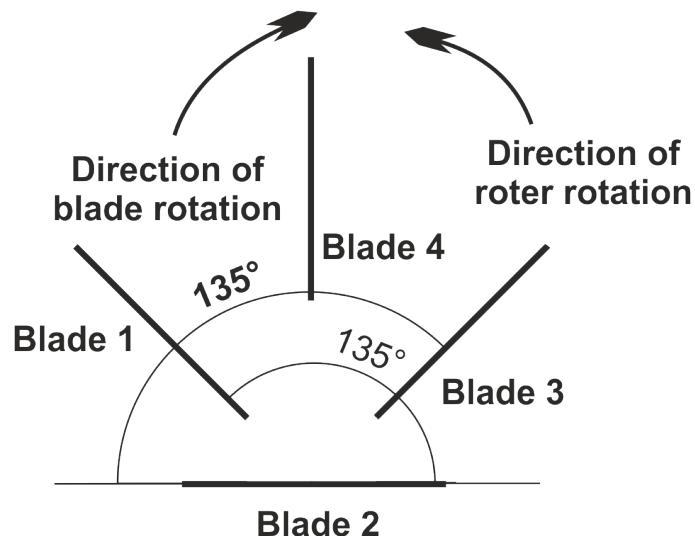


Fig. 3 Relative motion of shaft & blade

GURV Solution:

This “Drag cum Lift” design predominantly use drag force as prime mover and addition of lift force coherent with drag force is the uniqueness of the design. (Fig. 4) This innovative technique not only mitigates reverse drag but ingeniously transforms it into a valuable lift force coherent with the drag force, that contributes positively to increase efficiency. This paradigm-shifting approach stems from the recognition, that wind applies all its energy in dragging whatever comes in its way.

In contrast to conventional 3 blade turbines using drag force into lift, **GURV** system employs a novel control

Fig. 4 Quarter rotation

technique to continuously adjust the attack angle of its all-blade panels, aiming to optimize torque from forward drag in part rotation of blades, and convert reverse drag into usable lift force, all through a single coordinated intelligent control action.

Maximizing Energy Harvesting:

This unique approach allows to harness maximum wind energy by aligning torque generated from drag forces with torque generated from lift forces, seemingly an impossible task. During one half rotation, when the blades move with the wind, it efficiently captures drag forces, always oriented in the wind's direction. During the other half rotation, when blade moves against the wind, it generates a net lift force, again in the direction of rotation by changing the attack angle. This harmonious combination of drag and lift forces sets **GURV** design apart, as a groundbreaking innovation in wind energy sector.

Energy to Weight Ratio Performance:

Moreover, the innovative design uses simple blade structure reducing wind turbine weight and blade component sizes, even for turbines generating several megawatts of power. This design approach uses small size, nearly flat plate, type sub blades making them light weight. These thin sub-blades also provide control to change effective area of the blade panel to allows generation of energy even at higher stormy wind speeds. Notably, **Drag cum Lift turbines** do not require stalling even in severe storm conditions, ensuring peak power generation even in wind speeds exceeding 180 KMPH.

This unique design approach also minimizes the impact of drag on the tower structures, allowing them to be made lighter and more cost-effective. The fact that wind drag is dependent on the area and we are directly converting most of the drag into energy, it advantageously changes the ratio of total drag to output. Which means tower in new design will have less drag for any given power of the wind turbine.

Adaptive Energy Optimization & ROI:

One of the most intelligent features of this technique is use of self-regulating mechanism within the blade panels. This dynamic control of effective blade area, optimizes energy generation across wind speeds that are 10 to 15 times higher than the turbine's rated optimum wind speed. This unique capability allows designers to optimally balance electrical capacity with local wind potential, revolutionizing the way turbines are designed with higher utilization factor. By improving the utilization factor by at least tenfold, GURV significantly boosts the net production of electricity, making it a highly cost-effective and sustainable solution. These factors producing higher output and less initial cost can reduce **ROI to less than ten years** from existing ROI of more than thirty years.

Re-visiting the Air Foil Design:

In sharp contrast to traditional wind turbines, which predominantly draw inspiration from the aviation industry's airfoil designs, **GURV** charts a groundbreaking path of combining drag and lift forces together. While airfoil designs are characterized by a delicate balance between increasing lift and minimizing drag force, it introduces a paradigm shift in using drag as the main propellant. Conventional airfoil-based wind turbine designs are constrained by the fact that the blade directly encounters less than 10% area of the swept wind at any given moment. This limitation implies that most of the wind passes through without significantly contributing to energy generation, relegating it to a supplemental role.

Established statistical measures such as Reynold numbers, once developed painstakingly through practical experimentation in the past, provided reliable insights into existing designs. Now, with the advent of Drag Cum Lift Wind Turbines (DLWT), the time has come to redefine coefficients specific to **GURV** coefficients. A more purposeful evaluation is needed to calculate the ratio of the loss in total kinetic energy within the swept wind area to energy output for a given wind area—a metrics that will shed new light on the efficiency and full potential of the **GURV** design.

Efficiency Redefined:

Furthermore, GURV's design drastically alters the efficiency landscape. Traditional airfoil designs witness a fractional loss of wind speed in the cross-section area just after crossing the blades, resulting in harnessing a minute fraction of total kinetic energy within that volume of air. In contrast, the GURV design provides designers with freedom to choose the rotor's rotational speed to few RPM, allowing for precise control to optimize amount of kinetic energy conversion, into torque. Slower rotor speeds, for instance, yield higher drag forces, while the hypothetical scenario of stopping the rotor entirely and blocking the wind with blade panels generates maximum drag force but lacks feasibility for converting this drag force into energy.

Putting it from an energy efficiency perspective: -

1. GURV system optimizes drag force in to torque.
2. It avoids reverse drag to a fraction of a percent.
3. Converts most of the conventional reverse drag into lift force coherent with Drag force.
4. It generates many times more KWH over the year due to very wide 10-15 times optimum wind speeds.
5. It does not need stalling arrangements and its design permits to generate output from few KMPH to above 200 KMPH wind speeds.
6. Scalable from few KW for domestic to several MW commercial capacity.

Computational Simulations GURV:

In our quest to redefine the future of wind energy, we conducted in-depth computational simulations to analyze the performance of our patented wind turbine, GURV. (Fig. 5) Employing SteadyState simulations, we explored the blade behavior of five distinct blade positions (0° , 20° , 40° , 60° , 80°) while also varying blade configurations by rotating them around their central axes. (Fig. 6) The investigation used the finite volume-based software Ansys Fluent 2019 R2 at various blade positions. The simulations were

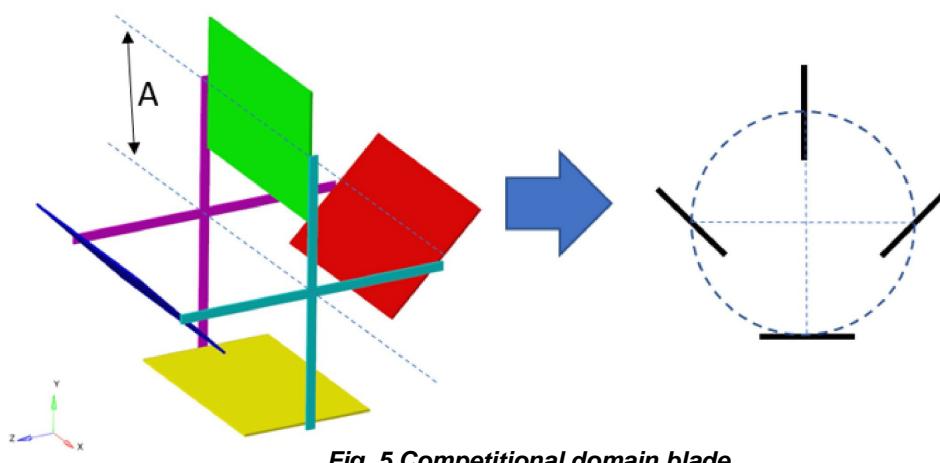
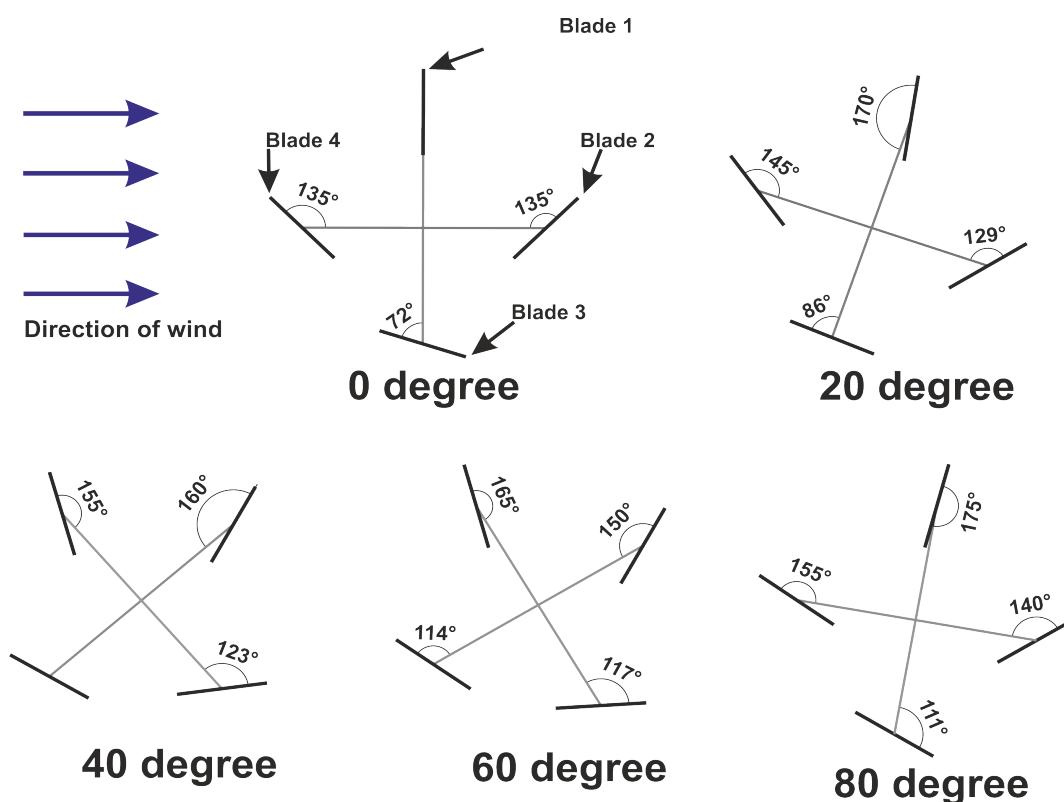



Fig. 5 Computational domain blade

performed using the pressure-based solver and a realizable $k - \epsilon$ turbulence model. The simulations were conducted for a quarter of the rotation, as the blades acquired the same position by interchanging the 4 blades after each quarter rotation by continuously adjusting their angle of attack using advanced controls.

The outcomes of our study provide critical insights into the efficacy of GURV, and we draw the following conclusions:

- 1) Continuous Optimized Angle of Attack Yields Effective Lift by converting reverse drag into lift
- 2) Positive Lift Forces Across All blade Positions
- 3) Substantial positive Drag Forces for Enhanced Energy recovery and negligible reverse drag effect:

Fig. 6
Drag result of static test

GURV vs. Conventional Wind Turbines:

Compared to existing wind turbine designs such as HAWT's and VAWT's, the GURV system shines as a true innovation. This demonstrates an impressive 500% increase in power generation while maintaining significantly lower cut-in and upper cut-off wind speeds, even in the face of storms. The transformative capabilities of the design extend beyond its energy generation prowess.

Conclusion

In conclusion, **“GURV” Drag Cum Lift wind turbine technology** represents a paradigm shift in wind energy generation. Its ability to simultaneously harness both drag and lift forces, adapt to varying wind conditions, and maximize energy output sets it on the path to redefine the future of renewable energy production.

INVENTOR

Rakesh Aggarwal

Mr. Rakesh Aggarwal is an Ex ISRO-scientist and founder of **COMCON** group of companies. He started his carrier with ITU sponsored SITE experiment at SAC Ahmedabad and soon diversified in to manufacturing of professional broadcast equipment. He is known worldwide for his expertise in prominent digital radio standards DRM and HD Radio and commissioning of world's largest digital radio network of AIR/Prasar Bharti.

Inventions and patent holding

GURV wind turbine technology for **A DRAG CUM LIFT BASED WIND TURBINE SYSTEM HAVING ADJUSTABLE BLADES** granted patent in India 368515 and PCT/IB2020/059302 and many more jurisdictions in pipeline. This Patented technique is capable of uniquely combining best of both mutually perpendicular, Drag and lift forces in a super-efficient design. The turbines can produce more than 2-3 times more energy from the same wind resource.

SVURG/ Z-Mod technology Indian Patents 351456, 351458, 360271, 368356 and international patents US 10,979,368 B2, US 2021/0144038 A1 and many more. This concept directly generates modulated carrier sine waves with "**ZERO SIDE BANDS**" making carrier itself, to carry large amount of data saving bandwidth.

ADVISOR

Dr. Pritanshu Ranjan

He has done his graduation (B. Tech) in Mechanical Engineering from GJUS&T, Hisar. He did his masters in Fluids Engineering from Motilal Nehru National Institute of Technology, Prayagraj. He was awarded a gold medal for standing first in order of merit in **M. Tech** for the 2010 batch. During his masters, he developed an interest in Numerical Modeling of Fluid Flow and went on to do **PhD** in the area of Computational Fluid and Heat Transfer from the Department of Applied Mechanics, **IIT Delhi**. In December 2017 he joined the Department of Mechanical Engineering at **BITS Pilani –K K Birla Goa campus**, Goa, as an Assistant Professor and is still working there.

His research interest mainly comprises numerical modelling of fluid flow and heat transfer in turbulent regimes. He has worked on various Hybrid turbulence models especially, Partially Averaged Navier-Stokes (PANS) modelling. His current area of research includes drag reduction, the study of primary and secondary instabilities for flow over bluff-bodies, acoustics analysis of centrifugal pumps, and CFD-DEM study of the fluidization process. He has published various articles in reputed international journals and conferences.

Notes: -

OUR PARTNERS

BITS Pilani
Pilani | Dubai | Goa | Hyderabad

COMCON

DIGI-SYS

An ISO 9001:2015 Company

KRISHWAVE

Transforming Technology ... Inspiring Innovation

OUR CONTACT

+91-7042694844

info@truedigitalradio.org

Unit #005, GF, U.S. Complex, 120,
Mathura Road, New Delhi - 110076

